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Abstract 

Primate brains differ in size and architecture. Hypotheses to explain this variation are numerous 

and many tests have been carried out. However, after body size has been accounted for there is 

little left to explain. The proposed explanatory variables for the residual variation are many and 

covary, both with each other and with body size. Further, the data sets used in analyses have been 

small, especially in light of  the many proposed predictors. Here we report the complete list of  

models that results from exhaustively combining six commonly used predictors of  brain and 

neocortex size. This provides an overview of  how the output from standard statistical analyses 

changes when the inclusion of  different predictors is altered. By using both the most commonly 

tested brain data set and a new, larger data set, we show that the choice of  included variables 

fundamentally changes the conclusions as to what drives primate brain evolution. Our analyses 

thus reveal why studies have had troubles replicating earlier results and instead have come to such 

different conclusions. Although our results are somewhat disheartening, they highlight the 

importance of  scientific rigor when trying to answer difficult questions. It is our position that 

there is currently no empirical justification to highlight any particular hypotheses, of  those 

adaptive hypotheses we have examined here, as the main determinant of  primate brain evolution. 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Introduction 

The field of  primate brain evolution can be characterized as an array of  contradicting results (1, 

2). Most studies have utilized phylogenetic comparative methods, in the guise of  phylogenetic 

generalized least squares regression (PGLS). Brain or neocortex size have often been the 

dependent variables, in combination with a varying number of  predictor variables, depending on 

the hypothesis at hand. As conflicting results abound we think an evaluation of  this approach has 

its merits. Therefore, we here systematically vary choice of  data set and inclusion/exclusion of  

predictor variables in the PGLS framework, to investigate if, why, and when contradictory results 

emerge. 

Most previous studies have relied on one of  only two available datasets on brain size (3, 4). We 

here include new data (5) added to one of  the old datasets (3) to broaden the reanalysis. Though 

eager to reach interesting biological conclusions from the new data, we are foremost concerned 

with evaluating the validity of  previous analyses. We believe that if  the data is underdetermined in 

the sense that predictor A is significant and predictor B non-significant in one context, while the 

reverse is true in another context, then we have currently no method to determine which variable 

is most important, if  any. As will be explained, our choices of  both method and data are based 

on what is praxis in the field of  primate brain evolution – this study is not driven by any 

particular biological hypothesis and seeks only to reach biological conclusions about reliability of  

results. 

There exist many suggested non-mutually exclusive hypotheses for causes of  variation in size and 

architecture of  primate brains. Here, we summarize seven such particularly popular hypotheses 

that have been both supported and rejected in various studies. 

Allometric relationships. Brains are similar to other organs and thus scale allometrically with body 

size. Similarly, brain parts scale allometrically with brain size. Simply put, larger brains are 

required to run larger bodies. Most differences in brain size and brain architecture can thus be 

predicted by body size (6, 7)). Due to such known allometric relationships, one usually controls 

for body size / brain size in studies of  primate brains. Whatever residual variation is left is the 

target for the adaptive hypotheses. The rationale here is that “intelligence” corresponds to the 

amount of  excess brain mass after controlling for brain mass dedicated to bodily functions (8, 10, 

11, 12, but see 9). However, body size alone accounts for more than 90% of  the variation in 

brain size differences between primates (13, 8), so only little is left to explain. 

General cognitive abilities. Larger relative brain size or brain component size has evolved to meet 

higher cognitive demands (8, 14, 15, 12, 16, 17, 18). 

3

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/454132doi: bioRxiv preprint first posted online Oct. 26, 2018; 

http://dx.doi.org/10.1101/454132
http://creativecommons.org/licenses/by-nc-nd/4.0/


The social brain hypothesis. Some primates evolved large brains and/or larger brain components for 

reasons having to do with social complexity (e.g. 19, 20, 21, 22, 23, 24, 25).  

Sexual selection. Demands of  sociality are different between males and females. This should 

produce detectable differences in relative brain size or brain component size between species 

where sexual selection is high compared to species where it is relaxed (26, 27, 10, 28). 

Diet. Fruits are harder to find than leaves, so some primates have evolved larger brains and/or 

large specific brain parts to cope with “a challenging diet of  fruit” (29 p. 312, 30, 31, 32, 33). 

Alternatively, the causal relationship is hypothesized to go in the other direction, that larger 

brains (that evolved for another reason) demands a more high-calorie diet (34, 35). 

Life history. Variation in juvenile period and life span is hypothesized to affect brain size evolution 

(36, 37). An extended juvenile learning is necessary to evolve a bigger brain (38, 39). Also, a 

longer life span is a consequence of  slow growth in order to cope with the high energy costs of  

developing a large brain (40, 41, 42) and/or to facilitate more opportunities to harness the 

products of  enhanced brain size (36, 43). 

The mosaic brain hypothesis. This is a composite hypothesis where it is hypothesized that “variation 

in the size of  individual brain components reflects adaptive divergence in brain function 

mediated by selection” (44, p. 2, 45, 46, 27). Here, all hypotheses can come into play 

simultaneously (21). 

The list of  competing hypotheses can go on (1, 36, 2), but the message from the literature is 

clear: there is no real consensus about the adaptive explanations for neither primate brain size 

nor primate brain architecture. All these studies have sought to find evolutionary drivers of  

primate brain evolution, where residual brain size or different aspects of  brain architecture have 

been used as approximations of  intelligence, making it difficult and unjustified to highlight any 

particular hypothesis from the smorgasbord of  significant results. 

Because results have proven both ambiguous and contradictory, we use new data (5) in 

combination with the classic brain data set provided by (3) and report the complete list of  

models that results from exhaustively combining six commonly used predictors (female group 

size, male group size, female sexual maturity, life span, innovation, and percent fruit in diet). Our 

choice of  predictors in this studie reflect our notion of  what hypotheses is common and is not 

an exhaustive combination of  tested predictors. Others have used combinations of  other 

predictors (e.g. 37, 47).  
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We start out by calculating the ‘best’ model according to the Akaike information criteria (AIC) 

both when using total brain size as the dependent variable and when using neocortex size as the 

dependent variable. Then we use this output and examine the stability of  results when the 

inclusion of  different predictors is altered. We end by examining the stability of  previously 

published analyses in the same way. 

Our aim here is not to reach a final verdict on the biological relevance of  different hypotheses, 

but rather to investigate if  data and methods currently at hand are productive enough for such 

considerations in the first place. 

Material & Methods 

Data 

All data used in this study were collected from published literature and are presented in the 

Appendix. Most studies on primate brain evolution have relied on a classic data set on primate 

brains provided (3), for example (31, 32, 48, 49, 41, 36, 25, 50, 19, 35, 47, 38, 51, 52, 53, 54, 55, 

26, 27, 56, 44, 57, 58, 59, 14, 60, 20, 61, 62, 63, 39, 64). Data on brain and neocortex size used in 

this study were obtained by pooling (3) and new data from (5). By pooling we refer to the 

weighted average of  two or more sets of  data. 

Life history and body size data were obtained by pooling data from (65) and (33). Length of  

juvenile period is approximated by age of  sexual maturity. Life span is calculated as the period 

between sexual maturity and maximum recorded age at death. Percentage fruit in diet were 

obtained by pooling data from (33, 66, 65, 67). Rates of  innovation were taken from (14). 

We used female weight as a proxy for species weight as it is less variable than male weight among 

species. Variation in male weight is in sexually selected species to a large degree a consequence of  

selection on physical strength (68). 

Though there are several ways to quantify social complexity, e.g. pair-bonding (20), tactical 

deception (25), we use group size as it is the most common used approximation of  social 

complexity (e.g. 69, 51, 26, 27, 54, 38, 30, 39). In this study both male and female group sizes are 

used because it has previously been shown that female rather than male group size correlate 

positively with neocortex volume in primates (26; 27), suggesting that it is social demands on 

females that mainly drives primate brain evolution. 

Number of  species with full data on all variables (including phylogeny) and included in analyses 

are N = 40. 
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Statistical analysis 

All analyses were executed in R (70) using the packages NLME (71), APE (72), MASS (73) and 

BRMS (74). All variables were log-transformed prior to analysis except percentage fruit in diet, 

which instead were arcsine-square root transformed. 

We used phylogenetic generalized least squares (PGLS) regressions throughout. This method 

allows for the estimation of  the impact of  phylogeny on the covariance among residuals, thereby 

controlling for relatedness (75, 76). A consensus phylogeny for each dataset were obtained from 

(77). Lambda (λ) was estimated but in some cases when lambda is very close to 1, processing in R 

sometimes crash due to an optimization error. When this happened lambda was fixed to 1 (77). 

All combinations of  the following variables were used as predictors: female weight, female group 

size, male group size, female sexual maturity, life span, innovation, and percent fruit in diet, both 

when using total brain size and neocortex as the outcome. The mosaic brain hypothesis (see 

introduction) is explicitly tested when using neocortex as the outcome variable. Female weight 

was included as independent variable in all analysis (i.e. in 63 models) because it is standard 

procedure to control for body and thereby consider the analyses as predicting relative brain size 
(but see for example 12). This sums to 63 models per dependent variable (total brain and 

neocortex).  

26 – 1 = 63 

It therefore follows that each predictor is included in 32 * 2 models.  

Model selection was carried out utilizing the Akaike information criteria (AIC). 

One way to assess the severity of  collinearity in a least squares regression is to calculate the 

variance inflation factor (VIF). However, because the PGLS regression used here assumes a 

correlated residual structure the VIF diagnostic does not carry over easily (75). Our approach was 

instead to calculate posterior distributions in a Bayesian framework and visually inspect weather 

they correlate (Appendix). 

Results 
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We analyzed the effect of  six predictor variables on two outcome variables: total brain size and 

neocortex size. First, we calculated the ‘best’ model according to the Akaike information criteria 

(AIC), both when using total brain size as the dependent variable and when using neocortex size 

as the dependent variable. As can be seen in table 1, AIC resulted in a model that includes female 

weight, male group size, female group size, lifespan, female sexual maturity and fruit, omitting 

only innovation, as the best model predicting total brain size. Likewise, in table 2 for neocortex 

size as the dependent variable, AIC resulted in a model that includes female weight, male group 

size, female group size and female sexual maturity. 

Table 1. The following model was selected with AIC for total brain size as the dependent variable.

Predictor B se t p

Female weight 0.590 0.039 15.177 <0.000

Male group size -0.090 0.058 -1.551 0.131

Female group size 0.108 0.049 2.220 0.033

Life span 0.240 0.086 2.800 0.009

Female sexual maturity 0.158 0.090 1.756 0.088

Fruit 0.238 0.088 2.720 0.010

Model summary

R2 0.975

λ 1

N 40
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Table 2. The following model was selected with AIC for neocortex size as the dependent variable.

Predictor b se t p

Female weight 0.564 0.049 11.437 <0.000

Male group size -0.146 0.073 -2.002 0.053

Female group size 0.233 0.059 3.958 <0.000

Life span 0.266 0.108 2.465 0.019

Female sexual maturity 0.267 0.113 2.358 0.024

Model summary

R2 0.977

λ 1

N 40
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AIC is not a method that involves p-values per se. Instead it estimates the out-of-sample deviance 

and is therefore concerned with prediction. However, in the literature of  primate brain evolution, 

p-values are often used to select among AIC-selected predictors with the aim to reinforce or 

undermine hypotheses. Therefore, we calculated p-values for the six predictors for all models 

possible, that is the exhaustive combinations of  the six predictors. This resulted in 63 models in 

total where each predictor was included 32 times. Many predictors were estimated both above 

and below p = 0.05, the conventional boundary for the rejection of  hypotheses. Whether a 

predictor was above or below p=0.05 depended on what other variables were included in a 

particular model (i.e. which concomitant predictors). Table 3 and 4 illustrate this by first showing 

the model in which each predictor was estimated to the lowest p-value, and subsequently the 

model that gave the highest p-value. As can be seen in table 3, where total brain was used as the 

dependent variable, female group size, life span, female sexual maturity and fruit each moved 

from significant to non-significant when changing concomitant predictors. Likewise, as shown in 

table 4 where neocortex was used as the dependent variable, male group size, life span and female 

sexual maturity each moved from significant to non-significant when changing concomitant 

predictors. 
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Table 3. Shows the change in p-value for each predictor when altering concomitant predictors using total brain as 

dependent variable. Read as follows: the focal predictor in the first column was estimated to a lowest p-value (out of  

all the 32 models the focal predictor where included) shown in the second column when using concomitant predictors 

shown in column three. Likewise, the maximum p-value shown in column four, were estimated using concomitant 

predictors in column five. N = 40. 

Focal predictor Min p-value Concomitant predictors Max p-value C o n c o m i t a n t 

predictors

Male group size 0.082 Fe m a l e g r o u p s i z e , 

Lifespan, Female sexual 

maturity, Innovation, Fruit

0.968 Lifespan

Female group size 0.017 Male group size, Lifespan, 

Female sexual maturity, 

Innovation, Fruit

0.540 F e m a l e s e x u a l 

maturity, Innovation

Life span 0.004 Male group size, Female 

group size, Female sexual 

maturity, Innovation, Fruit

0.083 Male group size, 

Innovation

Female sexual maturity 0.043 Male group size, Female 

group size, Life span, 

Innovation

0.263 Female group size, 

Innovation, Fruit

Innovation 0.240 Fruit 0.865 Male group size, Life 

span

Fruit 0.007 Male group size, Female 

group size, Lifespan

0.061 Male group size, 

F e m a l e s e x u a l 

maturity, Fruit
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Table 4. Shows the change in p-value for each predictor when altering concomitant predictors using neocortex size as 

dependent variable. Read as follows: the focal predictor in the first column was estimated to a lowest p-value (out of  

all the 32 models the focal predictor where included) shown in the second column when using the concomitant 

predictors shown in column three. Likewise, the maximum p-value shown in column four, were estimated using 

concomitant predictors in column five. N = 40

Focal predictor Min p-value Concomitant predictors Max p-value C o n c o m i t a n t 

predictors

Male group size 0.039 Female group size, 

L i f e s p an , Fema l e 

s e x u a l m a t u r i t y , 

Innovation

0.780 Lifespan, Female 

sexual maturi ty, 

Innovation, Fruit

Female group size 0.0003 Male g r oup s i z e , 

L i f e s p an , Fema l e 

sexual maturity

0.015 Female group size, 

Fe m a l e s e x u a l 

m a t u r i t y , 

Innovation, Fruit

Life span 0.017 Male g r oup s i z e , 

Female group size, 

F e m a l e s e x u a l 

maturity, Innovation, 

Fruit

0.403 Male group size, 

Innovation

F e m a l e s e x u a l 

maturity

0.016 Male g r oup s i z e , 

Female group size, Life 

span, Innovation, Fruit

0.153 Male group size, 

Innovation

Innovation 0.074 N o c o n c o m i t a n t 

predictors

0.970 Male group size, 

Female group size, 

Life span

Fruit 0.138 L i f e s p an , Fema l e 

s e x u a l m a t u r i t y , 

Innovation

0.699 Male group size, 

Female group size, 

Lifespan, Innovation
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To get an overview of  all models, i.e. the 32 models that each predictor were included in, table 5 

and 6 illustrate the number of  models in which each predictor was non-significant. Table 5 shows 

models that used total brain as the dependent variable, whereas Table 6 shows the same models 

using neocortex size as the dependent variable. As can be seen, whether a variable is a significant 

predictor of  brain or neocortex size depends to a worryingly high degree upon what concomitant 

variables that were also included in the model. 

Table 5. Number of  models in which each predictor was estimated non-

significant (p > 0.05) with total brain size as the dependent variable. N 

= 40

Predictor

Number of  models in which 

predictor is non-significant

Female weight 0/32

Male group size 30/32

Female group size 28/32

Life span 6/32

Female sexual maturity 30/32

Innovation 32/32

Fruit 6/32
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Table 6. Number of  models in which each predictor were 

estimated non-significant (p > 0.05) with Neocortex size as the 

dependent variable. N = 40.

Predictor

Number of  models in which 

predictor is non-significant

Female weight 0/32

Male group size 32/32

Female group size 0/32

Life span 26/32

Female sexual maturity 21/32

Innovation 32/32

Fruit 32/32
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To further illustrate how predictors jump above and below the significance level p = 0.05, table 7 

shows results that extend beyond the analyses hitherto reported. Here we have reanalyzed 

previously reported results by systematically altering one factor at a time and observe changes in 

calculated p-values. The first row in table 7 shows that the significant relationship reported by 

(33), between fruit in diet as the predictor and brain size as the dependent variable, becomes non-

significant when updating all predictors, that is adding data by pooling. Row two shows the 

opposite change. (33) reported a non-significant relationship between group size and brain size. 

However, with other brain data (i.e. changing data from [4] to [13] & [5]) the relationship is 

significant. Row three shows that (38) reported relationship between juvenile period and brain 

size reverse from significant to non-significant when adding more data to predictors by pooling. 

Row four shows that the relationship reported by (27) between various brain parts and sexual 

dimorphism, female group size and male group size reverse or disappear when, again, adding 

more data by pooling. Lastly on row five, (19) reported a significant relationship between group 

size and neocortex with a slope that significantly changed when adding more data by pooling and 

controlling for phylogeny. Further, ‘Dunbar’s number’, claimed to describe the cognitive 

threshold for group size in humans, changed from 150 to 22. Note also that the 95% confidence 

interval for this number ranges from 0.000002 to 251,549,413, rendering the threshold number 

useless (the asymmetry of  the confidence interval stems from exponentiating the fitted log[Y]). 

Note that when predicting with PGLS the model does not account for the phylogenetic position 

of  the observation to be predicted. All reanalyzes reported here use phylogeny to correct for 

non-independence. 
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Table 7. Overview of  changes in the relation between brain size and predictors as different data is 

used.

Source Reported relationship Reanalysis changes Result

(33) Brain size ~ Fruit in 

diet

Significant Updated 

predictors1

Non-

significant

(33) Brain size ~ Group 

size

Non-

significant

Other brain data2 Significant

(38) Juvenile period ~ 

non visual neocortex

Significant Updated variables3 Non-

significant

(27) Specific brain parts 

~ Dimorphism, 

Female/male group 

size

Non-

significant/

Significant

Updated variables4 Significant/

Non-

significant

(19) ‘Dunbar’s number’ = 

150

Updated variables 

and control for 

phylogeny5

‘Dunbar’s 

number’ = 22

1Using (33) brain data but pooling predictors from several sources (see Appendix). 2Using 

predictors from (33) but changing their brain data (4) to this study’s data (i.e. pooling [3, 5]). 3All 

variables used were pooled with data from (38, 65, 33). 4All variables used were pooled with data 

from (65, 33). 5For brain size data, we added the new data from (5) to that of  (3). Further, data on 

group size and body weight was pooled from (65, 33). Dunbar’s original model was used to predict 

Homo sapiens group size (‘Dunbar’s number’), without control for phylogeny. Note that in addition 

to being very different from the original estimate, the new ‘Dunbar number’ from our more 

complete and phylogenetically controlled model has a huge 95% confidence interval, ranging from 

0.000002 to 251,549,413. For all results see the Appendix.
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As is custom in phylogenetic comparative analysis, phylogenetic information is used to estimate 

the covariance of  the residuals (78). This process can lead to an R2 value different from model fit 

with non-phylogenetic least squares. With this in mind it can still give a crude picture of  the 

amount of  brain size variation that is explained by body size: R2 = cor(predicted, log of  total 

brain size)2 = 0.94, where predicted(total brain) = intercept(5.167) + b(0.667)*log of  female 

weight. 

Discussion 

Our analyses indicate that the field of  primate brain evolution is best characterized as an array of  

contradicting results (1, 2) and our results reveal why this is so. Within the PGLS framework, 

choice of  what variables to include, and what observations for those variables to include, 

fundamentally changes the conclusions as to what drives primate brain evolution. In this study we 

included new data (5) with the classic dataset on primate brain size (3) but this did not change the 

volatility in the results. If  so inclined, we could have presented support for any pet-hypothesis of  

our choice, and refuted any study we would have liked. Combined with the ‘publish-or-perish’-

situation in academia, this is not an ideal situation. 
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In table 1 and 2 we present the models that were selected with AIC. The AIC test in turn had six 

explanatory variables to combine. The predictors and the AIC test itself  were chosen according 

to our best effort to follow the established method within the field of  primate brain evolution. In 

other words, we chose variables that according to the literature are plausible determinants of  

brain size, and we used state-of-the-art methods to choose among combinations of  predictors. If  

this had been a standard study, we would have moved on to discuss the biological rationale for 

these AIC chosen models and special attention would have been given to the significant 

predictors (at p < 0.05). However, we argue that because of  the breadths of  hypotheses or 

hierarchies of  hypotheses, compatible with the results, the more important aspect of  this study is 

the instability of  results (tables 3-7). 

Tables 3-6 show that most of  the explanatory variables have been assigned parameter values with 

probability on both sides of  the significance level at p = .05. Table 3 and 4 show the most 

extreme cases in the exhaustive list of  models. Thus, using p-values to evaluate the importance of  

hypotheses that affect primate brain size leaves us ambivalent. AIC was developed to select 

among models and thus to save us from such ambivalence, but AIC can only evaluate the models 

given to it, which is why the results still are dependent on pre-test variable choice. 

Even though AIC has been established as praxis, many papers on primate brain evolution gives 

special status to predictors associated with p < .05. Following this habit, we think there is no way 

avoiding the problem illustrated in table 3 - 6; depending on what initial predictors happened to 

be included in the analyses, they can either be judged important (p < 0.05) or non-important (p > 

0.05) by the order of  magnitude shown in table 5 and 6 (for the predictors included in this study). 

The mosaic brain hypothesis - explicitly tested when using neocortex as the outcome variable - 

did not escape the problem of  inconsistent result as can be shown in table 4 and 6.  

When we included new brain data and updated variables on previously reported results, we found 

the same patterns. As shown in table 7, the results reported by (33) indicated that brain size was 

best predicted by diet, but not by sociality (measured as group size). When we added more 

observations (see Appendix) to their explanatory variables, both diet and sociality turned out to 

be non-significant. When we kept their original predictors, but used pooled brain data (3, 5), 

sociality became significant but not diet (see Appendix). 

Further, (27) predicted that the relative size of  brain structures involved in motor skills and 

coordination, such as the mesencephalon, diencephalon, cerebellum and medulla oblongata, 

would increase in species with greater rates of  sexual size dimorphism. They found dimorphism 

to be a significant predictor for all these structures except cerebellum. However, when we did a 

reanalysis with updated variables we found no significant relationships for any of  these 

predictors. 
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These results confirm a previous report: (1) re-analyzed endocranial data provided in (4) and 

concluded that “[o]ur results indicate that, even holding constant statistical methods, phylogeny, 

set of  predictor variables, response variable data, and species sample, the behavioral and 

ecological correlates of  brain size are sensitive to the use of  different predictor datasets” (1, p. 4). 

AIC is a method for choosing the model with the lowest out-of-sample deviance and as such a 

method concerned with prediction, not p-values. Clearly, as shown in this paper, the best 

predicting model may include variables that have non-significant p-values. In the context of  AIC, 

it is easy to illustrate that the best predicting models sometimes do not reveal the true 

relationship between individual predictors and the outcome, as for example in the case of  

concomitant variable bias (79) or collinearity. Yet inference about individual predictors is mostly 

what concerns scientists of  primate brain evolution, not mere prediction.  

Collinearity is member of  a family of  problems with model fitting referred to as weakly-

identifiable parameters (or sometimes non-identifiable) (80). If  the predictors co-vary a lot, i.e. 

share information, their posterior parameter distributions will correlate (when β1 increase β2 must 

decrease and vice versa) making it hard to identify a true estimate. To investigate if  our analyses 

suffer from collinearity we calculated posterior distributions for all parameters in a Bayesian 

framework, for the full model (containing all six predictors) and plotted the correlation matrix 

(excluding varying intercepts, see Appendix). We conclude from visual inspection that for some 

parameters there exist substantial correlation that could explain the varying results exposed in 

this study (80, 81, 82). 

Further caveats have been raised by other researchers, such as problems with measuring and 

comparing intelligence (15; 83), the idea of  adaptive specializations of  cognitive mechanisms (84, 

85), validity of  observational data versus experiment (18), choice of  brain measure (50, 6), 

measuring and defining sociality (86, 87, 69) and p-hacking: given that the same sample on brain 

volume (3) has been modelled against many variables, it is to be expected that Type 1-errors will 

emerge (88). Also, there is some evidence that different data samples are qualitatively different 

from each other (89, 90, 69). It has for example been shown that data on body size often are 

averaged, inaccurate and from unspecified sources (91, 89). 

In our analyses, variation in body size explain 94% of  the variation in brain size. This does not 

leave much to be explained by the competing adaptive hypotheses. The fact that these adaptive 

hypotheses explain very little variation, taken together with the unstable nature of  results, suggest 

that it is easy to overstate the importance of  sociality, diet, problem solving, or life-history for 

understanding brain evolution. 
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Further, other measures not included here may be more important for our understanding of  

brain evolution. Indeed, other combinations of  predictors have been used in previous studies, 

however, we believe that adding more predictors would reveal similar inconsistencies in the 

results and that the six predictors used in this study suffice to illustrate this. That variation in 

sensory and perceptual systems give rise to variation in brain size is not controversial (92, 93). A 

primate with very large eyes will have brain areas that correspond to sensory and perceptual 

needs. In addition, animals that are motor flexible, have many different kinds of  muscles, and 

large behavior repertoires need brain areas that control muscles. Therefore, larger brains are 

needed to drive more motor flexible bodies (94). To put this in Tinbergian terminology: a 

mechanistic link between brain size and body functions is straight forward and non-controversial, 

while a functional link between brain size and mental capacities is harder to define to non-

controversial precision.   

It is our position that, given the data at hand and the PGLS approach, there is currently no 

empirical justification to highlight any particular hypotheses, of  those adaptive hypotheses we 

have examined here, as the main determinant of  primate brain evolution. 
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