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Abstract 
Recent efforts to chart human brain growth across the lifespan using large-scale MRI data 
have provided reference standards for human brain development. However, similar models 
for nonhuman primate (NHP) growth are lacking. The rhesus macaque, a widely used NHP in 
translational neuroscience due to its similarities in brain anatomy, phylogenetics, cognitive, 
and social behaviors to humans, serves as an ideal NHP model. This study aimed to create 
normative growth charts for brain structure across the macaque lifespan, enhancing our 
understanding of neurodevelopment and aging, and facilitating cross-species translational 
research. Leveraging data from the PRIMatE Data Exchange (PRIME-DE) and other sources, 
we aggregated 1,522 MRI scans from 1,024 rhesus macaques. We mapped non-linear 
developmental trajectories for global and regional brain structural changes in volume, cortical 
thickness, and surface area over the lifespan. Our findings provided normative charts with 
centile scores for macaque brain structures and revealed key developmental milestones from 
prenatal stages to aging, highlighting both species-specific and comparable brain maturation 
patterns between macaques and humans. The charts offer a valuable resource for future NHP 
studies, particularly those with small sample sizes. Furthermore, the interactive open resource 
(https://interspeciesmap.childmind.org) supports cross-species comparisons to advance 
translational neuroscience research.    
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Main 
 
The rhesus macaque is among the most extensively utilized nonhuman models in translational 
neuroscience, owing to its resemblance in brain anatomy, phylogenetics, cognitive, and social 
behaviors to humans. Beyond the study of similarities and differences across species, which 
have led to key insights into the evolution and organization of human brain function, 
researchers are increasingly turning to nonhuman primate (NHP) models to gain mechanistic 
insights into brain development. Toward this goal, there are growing ambitions to establish 
population models of normative neurodevelopment in rhesus macaques across the lifespan, 
as this would provide insights into the etiology of pathological human brain development, as 
well as contribute to our understanding of brain vulnerability, plasticity, and aging1–3. The study 
of neurodevelopment in NHPs offers distinct advantages over similar longitudinal human 
studies3 in two key regards - a shorter lifespan (macaques typically live 25-30 years in 
captivity), which allows for more rapid generation of life-spanning data compared to humans, 
and the feasibility for conducting controlled experimental manipulations, particularly in 
pediatric research to target developmental stages for potential intervention.  
 
The human neuroimaging literature has recently provided a normative trajectory model for 
accelerating and scaling the generation of growth charts for brain structure over the lifespan4. 
Leveraging advancements in modern imaging techniques and, most importantly, the 
increasing availability of openly shared datasets that collectively cover the lifespan, this recent 
effort has quantified age-related changes in the human brain and generated growth charts 
using an aggregate dataset of over 120,000 scans4. However, we still lack comparative 
benchmark studies in NHPs, with a significant barrier being the establishment of normative 
growth charts that include a robust cohort of animals across their entire lifespan5–7. Despite 
this lag, there has been important progress in the field of NHP research. Data sharing in NHPs 
has emerged as a means of overcoming traditionally small sample sizes in this domain, 
spurring the development of tools that are robust to the many nuances of preprocessing for 
NHP imaging data, as well as variations in study procedures (e.g., anesthesia, scanner 
hardware), and heterogeneous magnetic resonance imaging (MRI) protocols used for data 
acquisition8. Additionally, an increasing number of studies have begun to sample 
developmental and aging populations, creating opportunities for collectively mapping brain 
changes across the lifespan in a robust manner. In particular, a recent open science initiative 
- PRIMatE Data Exchange (PRIME-DE)9–12 - has collectively aggregated data from over 1000 
NHPs, providing the opportunity to bridge this gap and establish comparative NHP brain 
growth charts across the lifespan.  
 
In this study, we aimed to build the corresponding normative growth charts for brain structure 
over the macaque lifespan that mirror those already generated for humans4. To achieve the 
sample necessary for this seemingly lofty task of an NHP model, we collectively aggregated 
over 1,500 MRI scans across more than 1,000 rhesus macaques shared through PRIME-DE 
and other research studies (see Supplementary Information S1.1-9). Similar to the human 
brain charts4, we used the generalized additive model for location, scale, and shape 
(GAMLSS) framework to build brain developmental trajectories of brain volume, cortical 
thickness, and surface area. Furthermore, we compared the development of global and 
regional brain structures between macaques and humans, identifying corresponding 
developmental milestones from the prenatal stage to aging. Finally, we delineated species-
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specific brain maturational changes and critical development stages for brain networks and 
relevant cognitive functions. We aim to provide: (i) an open resource of sex-stratified growth 
charts for macaque brain structures that can be utilized as normative trajectories in future NHP 
studies, particularly for benchmarking studies with small NHP samples; and (ii) age-related, 
species-comparable neurodevelopmental trajectories to support future translational efforts 
between human and macaques. 
 
 
Normative models of macaque brain growth 
Consistent with the approach previously employed in humans, we built global and regional 
brain growth charts for macaques across the lifespan using GAMLSS14. GAMLSS is a widely 
used distributional regression model, where parameters of location (i.e. mean), variation, 
skewness, and kurtosis or tails can be modeled as a function of age and sex in developmental 
studies to establish the inferred non-linear normative trajectories15,16. Leveraging large-scale 
datasets across many macaque studies, sex-stratified and age-related changes were modeled 
by optimizing fractional polynomial terms in GAMLSS (see Methods for details of model 
generation and optimization). To account for site-specific batch effects across studies, ‘site’ 
was included in GAMLSS as a random effect parameter. Additionally, the ComBat batch 
correction approach was applied to harmonize data across differences in preprocessing 
pipelines17. We present details of data acquisitions (Supplementary Information 1), 
preprocessing (Supplementary Information 2.1), quality control (Supplementary Information 
2.2), batch effect correction (Supplementary Information 2.3), model evaluation 
(Supplementary Information 3), and robustness analyses (Supplementary Information 3). 
Global and regional structural MRI-derived phenotypes, including tissue volume, cortical 
thickness, and cortical area were modeled in GAMLSS.  
 
Similar to human development, the trajectories for total gray matter volume (GMV), white 
matter volume (WMV), and subcortical gray matter volume (sGMV) of macaque brains exhibit 
significant increases early in life (Fig 1c-d). Specifically, GMV peaks at almost 9 months (0.74 
years) of life with a 95% bootstrapped confidence interval (CI) of 0.65 - 0.86 years for both 
males and females, followed by a slight decrease and a gradual plateau, indicating an early 
surge in GM development during the infant stage18. WMV also demonstrates a rapid increase 
during the prenatal period, though this was followed by an initial plateau at approximately 3-4 
months before finally showing a steady increase throughout the lifespan. In contrast to GMV 
and WMV, total sGMV exhibited a more gradual increase from birth, peaking during macaque 
adolescence at 4.39 years in males and females (95% bootstrapped CI: 3.70 - 5.75 years), 
followed by a steady decline. Conversely, the lateral ventricle shows a distinct pattern, with an 
initial decrease leading up to birth, followed by steady, linear-like growth during adulthood and 
an acceleration at the late elder stage. Overall, these findings were consistent across research 
sites (Fig 1e) and aligned with previous smaller-scale studies18,19. Of note, macaques differed 
more substantively in peak growth rates observed across tissue compartments in humans (Fig 
1f), with macaques reaching peak growth rates prenatally, whereas humans reached peak 
growth rates after birth (i.e. infancy for GMV and sGMV; toddler for WMV). 
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Fig 1. | Macaque brain charts. a) Comparison of lifespan and age milestones between macaques and 
human. b) Demographic box plot of rhesus macaque data used in the analysis. Data includes 1,024 
macaques with 1,522 MRI scans collected from 23 unique sites. c) Raw total tissue volume (in mL) for 
cortical gray matter, white matter, subcortical gray matter, and the lateral ventricles. Age (x-axis) is 
shown on a log scale, with points colored by sex. d) Normative trajectories of the four tissue volumes 
fit with GAMLSS, incorporating sex stratification and site-specific random effects, represented as 
median centile (the 50th centile) fitted curves of the population. Dotted lines represent 2.5% and 97.5% 
centile distributions, with both curves colored by sex. e) Site-specific curves for each tissue type. 
Trajectories show ranges of each contributing dataset with the site-specific random effect removed. f) 
Volumetric rate of growth (in mm3 per day) for each of the four global tissue types, colored by sex. Solid 
vertical lines denote the age at which the growth rate peaked.  
 
Beyond the total volumes of the four tissue types, we also modeled the trajectories for total 
cerebral volume (TCV), total cortical area (TCA), and mean cortical thickness (Fig 2a-c). Both 
total cerebral volume and cortical area showed substantial increases after birth, followed by a 
more gradual, steady increase until an initial plateau phase around 8 months to 1 year, with 
minimal changes thereafter. Conversely, mean cortical thickness peaks earlier than volume 
and area metrics, reaching maturity around 3-4 months (0.28 years, CI: 0.23 - 0.30 years), 
followed by a gradual decline over the lifespan. Similar trajectories were observed in humans, 
with cortical thickness peaking earlier during infancy, while TCV and TCA reach their 
maximum later during adolescence. This finding suggests that although cortical thickness 
plateaus at 3-4 months and begins thinning thereafter, gray matter volume continues to grow 
for up to approximately 1 year in macaques. Since cortical gray matter volume is a compound 
measure of its surface area and thickness, the increases in total volume during this period can 
be attributed to greater area expansion for both humans and macaques. 
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Fig 1. | Macaque brain charts. a) Comparison of lifespan and age milestones between macaque and human. b) Demographic box 
plot of aggregated and processed data used in the analysis. Data includes 1,024 macaques with 1,522 MRI scans collected from 23 
unique sites. c) Raw bilateral tissue volume (shown in mL) for gray matter, cortical white matter, sub cortical gray matter, and the 
lateral ventricles. Data is shown on a log scale, with points colored by sex. d) Normative trajectories of the four tissue volumes fit 
with GAMLSS, incorporating sex stratification and site-specific random effects, represented as median curves of the population. 
Dotted lines represent 2.5% and 97.5% centile distributions, with both curves colored by sex. e) ‘Unharmonized’ site specific 
curves for each tissue type. Trajectories show ranges of each contributing dataset with the site-specific random effect removed. 
Harmonization across these curves yields the normative, population level trajectories. f) Volumetric rate of growth (in mm3 per 
day) for each of the four global tissue types, colored by sex. Solid vertical lines denote the peak rate of growth. 
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We characterized regional growth using the Markov architectonic parcellation20 
(Supplementary Figures 4.1.1). Figure 2d depicts growth velocities of regional gray matter 
volume, surface area, and cortical thickness at the age of peak total gray matter volume in 
macaques (i.e. 0.74 years). Additionally, we present the human growth rate at the age of peak 
GMV estimated in the previous human chart study (i.e. 5.90 years)4. When compared in this 
manner, humans and macaques exhibited similar patterns of regional variation in growth rate 
for all three morphometric measurements. Volumetrically, in both humans and macaques, the 
precentral motor cortex continues to grow while a decline is seen in the postcentral sensory 
cortex, parietal, and occipital lobes. In the lateral frontal regions, both species have reached 
their peaks and have already started to decline. In contrast, the medial frontal regions take 
longer to fully mature and continue to grow.  
 

 
Fig 2. | Global and regional cortical morphometric phenotypes and growth rates. a) Scatterplots for total 
cerebrum volume, total cortical surface area, and mean cortical thickness, colored by sex. Volume is measured in 
mL, surface area in mm2 and cortical thickness in mm. All plots are shown on a log-scaled x axis. b) Normative 
trajectories with associated 2.5% and 97.5% centile distributions for each metric, stratified by sex. c) Growth rates 
per day of the respective phenotype, stratified by sex. Solid vertical lines again denote peak growth. d) Surface 
maps of regional growth rate for macaque and human at their respective total gray matter volume peak age (0.74 
years for macaque, 5.90 years for human). Sex-stratified models were generated for bilateral averages of each 
region, and growth rates for male are shown on the left hemisphere for visualization (female maps in Supplementary 
Information 4.3). Macaque regions are defined by the Markov parcellation and human regions are defined by the 
Desikan-Killiany parcellation13. Human growth rate data was obtained from the human brain charts project4. 
 
A notable discrepancy between humans and macaques is observed in the insular and ventral 
temporal cortex, with humans exhibiting strong volumetric growth at the respective peak age 
of GMV, while the macaque has already begun to decline. For surface area, the entire cortex 
undergoes cortical expansion in humans at the peak age of GMV. A similar area expansion is 
observed across the entire macaque cortex, except in the primary visual area, which 
experienced a decline. Both humans and macaques showed high cortical expansion in the 
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middle cingulate cortex, while macaques showed greater expansion in the precentral motor 
cortex compared to the postcentral sensory cortex. There is a notable difference in surface 
area expansion in the prefrontal cortex between species. Humans show rapid increases in 
total area in this region even after volume and thickness have begun to decline, suggesting a 
substantial expansion of the frontal surface during this period. In comparison, while the 
macaque prefrontal cortex is still expanding, it is not growing in area as disproportionately 
relative to the rest of the brain. Overall, regions vary in volume and area growth in both 
species, whereas cortical thickness peaks before GMV and begins to thin in most cortical 
regions. 
 
Developmental milestones across species  
To facilitate cross-species comparison of developmental milestones for brain structure, we 
generated tissue-specific proportional trajectories in macaques and compared them with those 
established in the human study (Fig 3). Lifespan milestones in macaques, including gestation, 
infancy, juvenile, adolescence, adulthood, and elderhood were defined primarily based on key 
developmental stages and physiological, and behavioral changes. In this context, human age 
scales to be approximately 3-4 times than that of macaques19. In macaques, the growth rates 
of all gray matter and white matter measurements peaked prenatally - with macaques being 
born with 55 - 75% of their maximum volumes. In contrast, humans are born with only 25 - 
30% of their maximum volume at birth, with the highest growth rates for gray matter occurring 
during infancy and white matter during toddlerhood. This observation aligns with previous 
studies, suggesting that humans undergo a unique, extended period of gestation that extends 
beyond birth29,30. The surface maps in Figure 3 show the average regional proportion of gray 
matter volume at different developmental stages for humans and macaques, respectively. 
Overall, both species reached their regional maximal volume along the posterior-to-anterior 
axis, with posterior regions maturing first, followed by anterior (Figure 3 and Supplementary 
Information 4). During infancy, frontal and temporal lobes in humans only reach 50-60% of 
their maximum, whereas in macaques at 4 months of age, these regions reach over 90% of 
their maximum. In both species, gray matter volume starts to decline in the frontal and parietal 
lobes before decreases are detected in total GMV.  Notably, the precentral motor cortex in 
macaques remains almost the same size throughout the entire macaque lifespan, while age-
related reductions are noted in humans, they are notably more moderate than in other regions.  
 
Comparing the trajectories of cortical gray matter development between species, while the 
order of cortical maturation is consistent (i.e., thickness plateaus first, followed by volume, and 
finally surface area) the developmental stages at which they reach their peak differ between 
humans and macaques. In macaques, cortical thickness, volume, and surface area mature 
during infancy. In humans, however, there is a substantial delay: cortical thickness peaks 
during toddlerhood, volume during middle childhood around age 6, and cortical areas the latest 
during late childhood to adolescence at age 12. This indicates a prolonged gray matter 
development in humans compared to macaques. For both species, subcortical gray matter 
peaks in size at a similar mid-puberty, roughly at 4 years for macaques and 12 years for 
humans. Regarding white matter, humans peak during young adulthood, but no associated 
peak is found in macaques. Notably, ventricular data was available prenatally for macaques, 
but not for humans; accordingly, estimates from the human growth chart publication are 
annotated as a dashed line before birth in humans in Figure 3. Ventricular volume in macaques 
decreases dramatically before birth. After birth, it goes on to show a slow, progressive increase 
throughout the lifespan. In humans, a significant exponential increase is observed in the elder 
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stage after 50 years. It’s important to note that the elder macaque samples in our study are 
limited (n=17 for age > 20 years, with the oldest being 33 years). While the typical lifespan of 
macaques in the wild is around 18-25 years31, those in captivity are reported to live up to 40 
years. Therefore, the current sample might not fully capture the elder stage of brain atrophy 
or significant ventricular enlargement in the macaque lifespan. 
 

 
Fig. 3 | Cross-species comparison of neurodevelopmental milestones. Normative trajectories of each global MRI 
phenotype for both human (top) and macaque (middle) as a function of age (log-scaled). Regional gray matter 
volume are shown at highlighted developmental milestones3,21–28. Both trajectories and regional gray matter volume 
are shown as a proportion of their maximum. Circles on the trajectories indicate the peak value of each phenotype 
(i.e. the maxima of the median trajectories), and triangles represent the peak growth velocity. Developmental 
milestones are approximately matched for each species for visualization purposes. Bottom panel depicts commonly 
used developmental milestones in macaque stratified by sex. Ranges depict time of expected onset (bars: walking 
onset, teeth eruption, age of first birth, first reproduction, weaning) or completion of specific behavioral or 
physiological maturity (lines: sexual maturation, brain resting metabolic rate (RMR), synaptic density, gestation)3,21–

28. 
 
Timing and peak age of brain development across species 
To characterize the critical brain developmental age, we calculated the regional peak age of 
brain growth for volume, surface area, and cortical thickness in macaques (Fig 4a, top). We 
also estimated peak age in humans using the previously established human charts4. In both 
humans and macaques, gray matter grows and reaches its maximal thickness first, then starts 
to thin, while the cortical surface continues to grow, with some regions expanding even after 
the volume peaks. Across the cortex, the peak age of volume, area, and thickness share 
similar spatial variability (human: r=0.27-0.64, p<0.001; macaque: r=0.40-0.44, p<0.001) 
except for the peak age of area versus thickness in macaque (r=0.03, p=0.80). In macaques, 
the visual cortex plateaus first, during infancy (< 3.5 months), while the motor cortex, 
inferotemporal sulcus, and inferior frontal pole plateau the latest. In humans, the thickness of 
the insular and cingulate cortex plateaus last during early childhood at 3.93 years of age, while 
expansion and thinning continue until adulthood at 26.6 years. To further compare the relative 
peak age across the cortex between humans and macaques, we utilized a previously 
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developed cross-species transformation and mapped macaque peak ages to the human 
surface33. The differences in peak age rank between humans and macaques were calculated 
by subtracting the transformed macaque ranked map from the ranked peak age map in 
humans. Figure 4a (bottom) presents the differences (human versus macaque) of the ranks 
in volume, area, and thickness. Overall, across the cortex, insular and cingulate cortex 
matured relatively later than other regions in humans compared to macaques. This prolonged 
maturation period may provide an extended window of opportunity for these regions to support 
the development of more complex cognitive abilities unique to humans. 
 
 

 
 

Fig 4. | Regional peak age of morphological phenotypes, proportion of gray matter volume for each 
networks and cognition decoding of gray matter growth. a) Regional peak age of gray matter volume, surface 
area, and cortical thickness for human and macaque. Top: Macaque peak age maps. Middle: Human peak age 
maps from the human charts project4. Bottom: Relative differences in peak age rank between humans and 
macaques calculated by subtracting macaque peak age rank from the human peak age rank. Macaque peak age 
maps were ranked and transformed into human space for direct comparison. Red color indicates regions where 
humans mature later than macaques, compared to other cortical regional development; blue color indicates that 
macaque matures later in cortical development. b) Averaged proportional growth within networks at each 
developmental stage for both human and macaque. The developmental stages were approximately matched 
between human and macaque by averaging the respective proportions of total lifespan at each stage as noted in 
Fig 3 ).  c) Decoded cognition development trajectories from birth to adolescence for human (0-18 years) and 
macaque (0-6 years). Regional growth maps of gray matter volume with a progressively increased interval (human: 
per 3 months; macaque: per month) were decoded using Neurosynth32 meta-analysis. Shaded lines represent 
individual terms associated with a topic, and solid lines represent the average.  
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At the network level (Fig 4b), early growth in human brain development is proportionally 
greater, while late growth reduction is also more pronounced. In contrast, macaques mature 
across all networks prenatally and exhibit relatively less change postnatally, with visual and 
motor networks showing a minimal decline from maturity to old age. In both species, the 
volume of higher-order networks decreases more than that of primary networks during the 
later aging process. This is much more notable in humans, whereas in macaques, the aging 
differences between higher-order and primary networks are not as apparent.      
 
Cognition development across species  
To understand how differences in brain development relate to the formation of species-specific 
cognition and behavior, we conducted a Neurosynth32 meta-analysis utilizing volumetric 
cortical growth maps spanning birth to adolescence (Fig. 4c). Regional growth was calculated 
monthly for macaques and every three months for humans, with each region's volumetric 
change computed as a proportion relative to the previous time point. Next, we transformed the 
macaque growth maps to human space using a previously established macaque-to-human 
transformation. Then, we decoded each growth map with a curated set of feature terms from 
Neurosynth, which encompass a spectrum of cognitive functions, including perception, action, 
and more abstract functions such as emotion and social cognition34. Finally, we summarized 
terms into 24 topics previously reported by calculating the averaged decoding score across 
terms for each topic at each time point (see Supplementary Information 5).  
 
Sorting the decoded topics (i.e. the rows in Fig 4c) based on the age at which their associated 
cognitive function peaks in humans reveals a hierarchical sensory-association axis, a pattern 
that has been observed previously34.  We observe short development windows from birth to 
infancy in regions associated with domain-specific sensory functions (e.g. “action”, “eye-
movements”, “motor”, and “multisensory processing”), with both species approximately 
aligning in structural maturity trajectories relative to their natural lifespan. In humans, 
specifically, cognitive development is extended further on the age axis as we shift focus to 
regions implicated in complex representations of information and social cognitions (e.g. 
“face/affective processing”, “emotion”, “pain”, “social cognition”). It is worth noting that “pain” 
is widely recognized as a unique sensory and affective experience, characterized by an 
anatomically diffused phenomenon that is implicated in extensive areas of the limbic brain and 
prefrontal cortex35. In contrast, in macaques, Neurosynth scores between structural growth 
and high-order cognitive functions decline to zero much earlier in the lifespan. These findings 
concur with prior studies, suggesting that macaque and human brains are most structurally 
and developmentally different in higher-order brain regions36. This could represent the 
consequence of selective cortical enlargement and reorganization37,38 that evolutionarily 
separated us and macaques from our common ancestor. 
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Fig 5. | Demonstration of interactive cross-species brain charts. Top panel depicts normative models of the 
morphological measurements derived from MRI for macaque and human. Bottom panel depicts homologous 
regions between human and macaque on cortical surface maps with associated growth trajectories. Growth 
trajectories for each region are shown on a log scale, including centile trajectories, stratification by sex, and 
annotations for its maximum (circles) and peak growth velocity (triangles).  
 
 
Brain Charts and Centile Scores Across Species 
A crucial component of this work, and translational neurodevelopment as a whole, lies in 
directly comparing the brain and its development between humans and other primates. To 
advance the discovery and application of translational research, we developed an interactive 
open resource (https://interspeciesmap.childmind.org) for the cross-species comparison of 
global and regional brain MRI phenotypes over the human and macaque lifespans following 
alignment based on developmental milestones (Fig. 5). This online platform integrates 
previously established human brain charts and corresponding centile scores with results 
presented here. It also utilizes prior macaque-human cortical alignment to display homologous 
brain regions between species. The normative model with centile trajectories, stratified by sex 
and annotated with peak growth velocities and their maximums are available for quick and 
interactive explorations for both humans and macaques. It aids NHP researchers in 
benchmarking the brain structure with limited animal samples for control groups and identifying 
the matched MRI-driven milestones to better understand the biological processes of brain 
development. 
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Discussion 
The present study established lifespan growth charts for brain structure in macaques that 
cover late gestation, infancy, juvenility, adolescence, early adulthood, mid-adulthood, and late 
adulthood. Importantly, we compared macaque brain development trajectories with the 
previously established human brain charts to understand neurodevelopmental resemblance 
across species. Overall, both human and macaque brain development follows an inverted-U-
shaped trajectory; however, each species exhibits a specific developmental timeline. Unlike 
humans, the peak growth rate of gray and white matter in macaques occurs prenatally, 
resulting in a more mature total brain volume at birth, with 50% to 75% lifetime size. In contrast, 
humans are born with only 25-30% of their adult brain size, and experience a prolonged growth 
period extending into adolescence, allowing more time for experience to shape higher-order 
cognition and social learning. Additionally, we provided sex-stratified, centiled normative brain 
trajectories through an interactive open-resource platform, supporting cross-species 
comparison of brain development between humans and macaques. With the rise of open-data 
sharing initiatives in the NHP community, these brain charts can be further refined to facilitate 
benchmarking of NHP brain development, potentially allowing for more flexibility in sample 
size requirements for future NHP research. 
 
Based on the largest macaque brain lifespan sample to date (1,522 scans from over 1,024 
macaques aggregated from 23 sites), the resulting lifespan trajectories align well with existing 
literature (sample size ranging from 7-66 macaques) and characterize developmental 
milestones of the cerebrum in macaques39,19,40,41,18,42. Total GMV peaks at 0.74 years (~9 
months, CI: 0.65 - 0.86 years), coinciding with previous studies that have also reported that 
GMV reaches its maximum size around 1 year of age, with no significant maturational change 
after the first 1-2 years39,43,18. Prior to GM volume plateau, cortical thickness matures earlier, 
reaching its peak around 3 months of age–during infancy–then gradually declining to adult 
thickness, with the trajectory itself resembling an inverted-U shape. This result is remarkably 
consistent with other longitudinal neuroimaging studies44. It also aligns with the timing of 
synaptogenesis, where synaptic density increases significantly prenatally to 3 months of life, 
followed by synaptic pruning that occurs into adulthood26–28. Similar to the GMV charts, the 
peak growth rate of WM volume in macaques also occurs during gestation, reaching over 50% 
of adult size at birth in macaques. This may reflect the rapid increase in myelinated axons 
prenatally compared to humans19,40,41. After birth, the increase in white matter volume to adult 
size is substantially longer than the increase in gray matter and total brain volume in both 
species19,45. After infancy, growth velocity in humans is greater than in macaques, 
progressively growing to a greater percentage with increasing age.  
  
Regarding subcortical gray matter, previous studies reported sGMV in macaques gradually 
increasing up to 3-4 years of age in early developmental cohorts18,42 and decreases in older 
cohorts5. Our study narrowed these estimates, suggesting that peak maturation occurs around 
4.39 years (CI: 3.70yrs - 5.75yrs), occurring post GMV peak, during adolescence. 
Interestingly, in humans, total subcortical GM volume also peaks later than the GMV short 
after sexual maturation, followed by a gradual decline4. Given that subcortical structures have 
been highly conserved throughout primate evolution46,47, it is not surprising that both species 
share similar growth phases. However, aging processes for specific subcortical nuclei differ 
between humans and macaques. While both species experience volume declines in caudate, 
putamen, and globus pallidus48,49, the hippocampus shows notable differences49. In humans, 
hippocampal volume decline is a hallmark of aging, with atrophy accelerating around middle 
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age50. In contrast, such a reduction in the size of the hippocampus has not been observed in 
aging macaques and does not appear to be related to cognitive memory impairment in older 
macaques48,51–53. Similarly, in chimpanzees, hippocampal volume does not show significant 
age-related changes either54. This suggests that hippocampal changes seen in humans may 
be unique in aging when compared to other primates48,51–53. Additionally, a notable difference 
in aging trajectories is also observed for total ventricular volume between species. Unlike 
humans, who have significant exponential ventricular enlargement after 50 years, macaques 
show a steady increase throughout their lifespan. Although our current sample (up to 33 years) 
might not fully represent the elder stage of brain atrophy in the macaque lifespan—since 
macaques in captivity can live up to 30-40 years—our findings suggest species-specific aging 
mechanisms. It's also important to consider that the relative lifespan of macaques in captivity 
may be more closely aligned with the concept of "healthspan" in humans, with comparable 
humane endpoints being determined as the point when the animals can no longer perform 
daily activities independently3,55–57. These divergences potentially reflect a greater vulnerability 
of humans to age-related neurodegeneration diseases such as Alzheimer’s and Parkinson’s48, 
underscoring the importance of the large-scale macaque charts in understanding human brain 
development and aging. 
 
In general, therefore, macaques are born more mature and develop at a rate 3-4 faster than 
humans18,30. In contrast, humans exhibit a prolonged growth period extending into adulthood, 
indicating neotenous neurodevelopment within primate lineage. In macaques, the growth 
velocities for volume, thickness, and area peak before birth, while in humans, only cortical 
thickness shows significant growth prenatally. After birth, the human neocortex grows at a 
slower rate than that of macaques, retaining plasticity for an extended period of time. 
Importantly, the rate of brain maturation varies across regions. The most pronounced delays 
in human brain maturation occur in the anterior cingulate cortex (ACC) and insula (Fig 4), both 
regions highly involved in cognitive, emotional, affective and pain processing in humans58–60. 
The ACC is a hub that integrates neural signals from the limbic system, hippocampus, and a 
wide range of cortical areas, supporting many cognitive and emotional functions such as self-
regulation, social interactions, reward, and motivation59,61–64. The insula is also a 
multifunctional area, supporting functions such as risky decision-making, emotional subjective 
feelings, and social interaction65,66. Recent fMRI studies have also revealed links between the 
anterior agranular insula and self-reflection67, interoceptive attention68, and awareness of 
bodily and emotional states69, highlighting its crucial role in human consciousness65. While the 
insular region in macaques also contains similar dorsal cognitive and ventral emotional 
subdivisions, macaques generally lack self-awareness and do not typically recognize 
themselves in mirrors70,71, though some may pass mirror tests with extensive training72,73. Prior 
literature has also shown that the anterior agranular insula is among the most significant 
expansions in humans compared to chimpanzees74. Although the current parcellations are too 
coarse for modeling age-related changes in subregions of the ACC and insula, the striking 
difference in the maturation timeline between species supports their unique roles in human 
behavioral evolution. 
 
Notably, other high-order association regions, such as frontoparietal and default mode 
networks, also exhibit neoteny, with protracted maturation in humans compared to macaques. 
However, unlike the insula and ACC, these regions are not the last to mature anatomically. 
After their gray matter volume reaches adult size, functional connections continue shaping 
brain modularity, increasing structure-function coupling, and transitioning from a sensory-
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centered schema to a hierarchically distributed organization29,75–77. To characterize the critical 
development stage and its associated behavior, we further decoded the incremental growth 
maps with a NeuroSynth meta-analysis. For both species, the most developmental similarities 
in the incremental growth maps lie in basic primary sensory related behavior tasks, such as 
those associated with “action” and “visual perception”. However, as topics begin to represent 
regions associated with high-order functioning (“decision-making”, “emotion”, “affective 
processing”, “pain”), humans exhibit much longer growth timelines. This reinforces the 
hypothesis of a protracted maturational trajectory in humans, disproportionately favoring the 
transmodal/association end of the hierarchical sensory-association axis34.  
 
Interestingly, not all regions display prolonged development timelines in humans. The 
precentral motor cortex in macaques grows more slowly compared to humans, with its volume 
and area fully reaching adult size between 4-9 years of age, during late adolescence, and 
extending to adulthood. The delayed maturation of the precentral cortex provides increased 
plasticity in macaque, allowing the refinement of learning and adaptation of fine motor skills78. 
Our meta-analysis echoed this finding, showing that the “motor” function had an extended 
growth timeline in macaques compared to humans. Taken together, the respective delayed 
maturation of specific regions in each species reflects species-specific adaptation to the 
environmental experience throughout evolution.   
 
Leveraging open science and data sharing, this study has collectively aggregated the largest 
macaque MRI dataset to date, spanning an age range that covers the lifespan. The resulting 
global and regional charts provide the first normative model, setting a benchmark for future 
macaque brain development research. This resource could potentially reduce the sample size 
requirements for studies investigating brain plasticity, vulnerability to neuropsychiatric 
disorders, and aging-related diseases, thereby supporting the '3R' (Replacement, Reduction, 
and Refinement) principles of ethical animal research. It’s worth noting, however, that most of 
the samples in this study are cross-sectional, which might not capture subtle developmental 
nuances attainable from multiple within-subject scans. For example, longitudinal studies have 
revealed a unique period of no net gray or white matter growth between 6-9 months. This 
period, reported in several studies, could be related to weaning, stress of newfound 
independence, or increased physical activity during this period. Probing such subtle intricacies 
warrants further validation through additional biometric and behavioral measurements. In late 
adulthood, our fitted trajectory showed no decline in total WM volume, contrasting with 
previous reports of age-related WM reductions in older macaque5,6,49. This discrepancy is likely 
due to the limited sample size for macaques older than 20 years (N=17, with only one male 
among them). As more open data-sharing initiatives emerge in NHP research, we anticipate 
the inclusion of more high-quality MRI data in the future, maximizing the reuse of NHP 
resources and enabling cross-species comparative models for studying the human brain. The 
GAMLSS modeling framework lends itself to the continued iterative aggregation of such data, 
allowing for the non-linear, age-related modeling of higher-order parameters (variance and 
skewness). To facilitate further investigations using brain chart resources in humans and 
macaques, we have provided cross-species whole-brain cortical mapping and lifespan 
normalized centile scores for humans and macaques, available at 
https://interspeciesmap.childmind.org/. 
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Methods 
 
Dataset and Preprocessing 
The nonhuman primate (NHP) data was aggregated from the PRIMatE-Data Exchange 
(PRIME-DE) consortium, UNC-Wisconsin Neurodevelopment Rhesus MRI Database1, and 
additional development studies. Refer to Supplementary Information 1.1-2.1 for details on 
individual study protocols, scanner manufacturers, and demographics. We preprocessed T1w 
and available T2w MRI images using ‘deepbet’ and ‘nhp-abcd-bids-preprocessing’2–4 
pipelines. Briefly, the data was first denoised using ANTs to remove the ‘salt-and-pepper’ 
noise, followed by skull stripping using ‘deepbet’, segmentation, surface reconstruction in 
FreeSurfer5, and registration to the MacaqueYerkes196 template. Additional segmentation 
templates from the early development stage were added into the ‘nhp-abcd-bids-
preprocessing’ pipeline to successfully segment infant macaques with age < 0.33 years. 
Quality assessment figures and metrics were generated for each preprocessing step for visual 
inspection and quantitative quality control (see Supplementary Information 1). In total, 1,024 
rhesus macaques (female=470, male=554, age range -0.227 - 30.64 years) with 1,522 unique 
scans from 23 research sites were included in the analyses. We then extracted global and 
regional volume, area, and thickness measurements utilizing the Markov7 parcellation to 
define regions across the cortices. ComBat was applied to global and regional measurements 
to adjust for potential batch effects that might arise from variations in the segmentation stage 
(see Supplementary Information 1.5).  
 
For cross-species comparisons, we utilized the previously established normative charts from 
the human study8. The GAMLSS modeled trajectories for global measurements (i.e. total 
volume, total area, and mean thickness) as well as the regional metrics defined by the 
Desikan-Killiany9,10 parcellation is available at https://github.com/brainchart/Lifespan.  
 
 
GAMLSS and Growth Charts 
To model age-related changes in brain structure across the lifespan with an aggregate 
dataset, we employed the Generalized Additive Model for Location, Scale, and Shape 
(GAMLSS)11. This approach allows us to fit non-linear growth curves with a wide range of 
distribution families that incorporate the variations in mean, variance, skewness, and kurtosis. 
A recent large-scale study has established human brain growth charts from over 100,000 
scans. Following this approach, we utilized GAMLSS to model nonlinear sex-stratified 
developmental trajectories on the macaque lifespan data. The generalized gamma distribution 
family, fractional polynomials, has been shown to be the most suitable outcome distribution 
for modeling brain growth curves across the lifespan, as it effectively captures the non-linear 
changes, heteroscedasticity, and skewness present in the data8. Therefore, fractional 
polynomials were optimally selected to model the growth trajectories with non-linearity in 𝜇 for 
each of the global and regional MRI measurements. Specifically, the following GAMLSS model 
is specified: 

 
 

𝑌 ∼ 𝑭(𝝁, 𝝈, 𝝂, 𝝉)            (1) 
 

			𝒈𝝁(𝝁) = 𝑺𝝁(𝑿𝝁)𝜷𝝁 + 𝒁𝝁𝜸𝝁	 

https://paperpile.com/c/qeOyag/QKgqN
https://paperpile.com/c/qeOyag/B4wvB+fyW9D+rupfg
https://paperpile.com/c/qeOyag/kXUfA
https://paperpile.com/c/qeOyag/laWd4
https://paperpile.com/c/qeOyag/IJ7hp
https://paperpile.com/c/qeOyag/B8mcs
https://paperpile.com/c/qeOyag/WHW38+UiWes
https://github.com/brainchart/Lifespan
https://paperpile.com/c/qeOyag/vltjH
https://paperpile.com/c/qeOyag/B8mcs


 

 
𝒈𝝈(𝝈) = 𝑺𝝈(𝑿𝝈)𝜷𝝈 + 𝒁𝝈𝜸𝝈 

 
			𝒈𝒗(𝒗) = 𝑺𝒗(𝑿𝒗)𝜷𝒗 + 𝒁𝒗𝜸𝒗 

 
			𝒈𝝉(𝝉) = 𝑺𝝉(𝑿𝝉)𝜷𝝉 + 𝒁𝝉𝜸𝝉                                                                       

 
The dependent variable, 𝑌 is modeled by a probability function 𝐹, commonly parameterized 
by distribution parameters: mean (𝜇), variance (𝝈), skewness (𝝂) , and kurtosis (𝝉). The 
location and scale of the distribution are characterized by mean and variance while the shape 
is characterized by skewness and kurtosis. Each parameter can be modeled as a linear 
function of explanatory variables through a link function 𝒈(). 𝑿 and 𝒁 are design matrices for 
fixed effect 𝜷 and random effects 𝜸 respectively. Non-parametric smoothing functions applied 
to independent variables for each of the four parameters are denoted as 𝑆. Similar to the prior 
work in humans, we used fractional polynomials as smoothing functions for the age effect in 
𝑿 and estimated the associated coefficients 𝜷. For each dependent variable, we fit all possible 
fractional polynomial models iteratively from a standard set of powers, 𝑝 ∈
{−2,−1,−0.5,0,0.5,1,2,3}, searching for the most appropriate subset of powers that optimize 
the model fit. The model with the lowest Bayesian information criterion (BIC) was selected as 
the final model for each global and regional brain metric. Of note, while the sample size is 
considered a large dataset in NHP studies, the age coverage from multiple datasets might be 
inadequate to model the non-linearity in variance (𝜎). As such, the searching algorithm was 
only estimated for the first order of distribution parameters (𝜇).         
 
In line with the previous study8, ‘site’ was also included in the model as a random effect, 
estimating mean (𝝁) to account for batch effort from the study site. Specifically, beyond the 
fixed intercept, observations that varied across ‘site’ were modeled by the random effect of 
the intercept, assuming the site variation follows a normal distribution 𝛾~𝑁(0, 𝛿!). Therefore, 
the potential batch effect - site-specific deviation - was taken into account in GAMLSS and 
estimated by the random effect term in the model. See further validation analyses in 
Supplementary Information 3.1-3.3. We also estimated the study-specific model for each site 
by removing the ‘site’ effect from the model (Fig 1, Fig SX), which characterized the brain 
growth curves for each site.  
 
Finally, we identified the optimal fractional polynomial models for each of the global and 
regional metrics. The models for the global metrics are as follows: 
 
 

𝐺𝑀𝑉	 ∼ 	𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑	𝐺𝑎𝑚𝑚𝑎(𝜇, 𝜎, 𝜈)	  (2) 
 

𝑔(𝜇) = 𝛼% 	+ 𝛼%,'() + 𝛽%,*(𝑎𝑔𝑒)+, + 𝛽%,,(𝑎𝑔𝑒)+, + 𝛾%,'-.( 
 

𝑔(𝜎) = 𝛼/ + 𝛼/,'() 
 

𝑣 = 𝛼0 

https://paperpile.com/c/qeOyag/B8mcs


 

 
 
 

𝑊𝑀𝑉	 ∼ 	𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑	𝐺𝑎𝑚𝑚𝑎(𝜇, 𝜎, 𝜈)  (3) 
 

𝑔(𝜇) = 𝛼% + 𝛼%,'() + 𝛽%,*(𝑎𝑔𝑒)+, + 𝛽%,,(𝑎𝑔𝑒)+, + 𝛽%,1(𝑎𝑔𝑒)+* + 𝛾%,'-.( 
 

𝑔(𝜎) = 𝛼/ + 𝛼/,'() 
 

𝑣 = 𝛼0 
 
 

𝑠𝐺𝑀𝑉	 ∼ 	𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑	𝐺𝑎𝑚𝑚𝑎(𝜇, 𝜎, 𝜈)  (4) 
 

𝑔(𝜇) = 𝛼% + 𝛼%,'() + 𝛽%,*(𝑎𝑔𝑒)+2.4 + 𝛽%,,(𝑎𝑔𝑒)+2.4 + 𝛾%,'-.( 
 

𝑔(𝜎) = 𝛼/ + 𝛼/,'() 
 

𝑣 = 𝛼0 
 
 

𝑉𝑒𝑛𝑡𝑟𝑖𝑐𝑙𝑒	𝑣𝑜𝑙𝑢𝑚𝑒	 ∼ 	𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑	𝐺𝑎𝑚𝑚𝑎(𝜇, 𝜎, 𝜈)  (5) 
 

𝑔(𝜇) = 𝛼% + 𝛼%,'() + 𝛽%,*(𝑎𝑔𝑒)+, + 𝛽%,,(𝑎𝑔𝑒)+, + 𝛽%,1(𝑎𝑔𝑒)* + 𝛾%,'-.( 
 

𝑔(𝜎) = 𝛼/ + 𝛼/,'() 
 

𝑣 = 𝛼0 
 

 
 

𝐶𝑒𝑟𝑒𝑏𝑟𝑢𝑚	𝑣𝑜𝑙𝑢𝑚𝑒	 ∼ 	𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑	𝐺𝑎𝑚𝑚𝑎(𝜇, 𝜎, 𝜈)  (6) 
 

𝑔(𝜇) = 𝛼% + 𝛼%,'() + 𝛽%,*(𝑎𝑔𝑒)+, + 𝛽%,,(𝑎𝑔𝑒)+, + 𝛽%,1(𝑎𝑔𝑒)+, + 𝛾%,'-.( 
 

𝑔(𝜎) = 𝛼/ + 𝛼/,'() 
 

𝑣 = 𝛼0 
 

 
 

𝑇𝑜𝑡𝑎𝑙	𝑠𝑢𝑟𝑓𝑎𝑐𝑒	𝑎𝑟𝑒𝑎	 ∼ 	𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑	𝐺𝑎𝑚𝑚𝑎(𝜇, 𝜎, 𝜈)  (7) 
 



 

𝑔(𝜇) = 𝛼% + 𝛼%,'() + 𝛽%,*(𝑎𝑔𝑒)+, + 𝛽%,,(𝑎𝑔𝑒)+, + 𝛾%,'-.( 
 

𝑔(𝜎) = 𝛼/ + 𝛼/,'() 
 

𝑣 = 𝛼0 
 

 
 

𝑀𝑒𝑎𝑛	𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠	 ∼ 	𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑	𝐺𝑎𝑚𝑚𝑎(𝜇, 𝜎, 𝜈)  (8) 
 

𝑔(𝜇) = 𝛼% + 𝛼%,'() + 𝛽%,*(𝑎𝑔𝑒)+, + 𝛽%,,(𝑎𝑔𝑒)+2.4 + 𝛾%,'-.( 
 

𝑔(𝜎) = 𝛼/ + 𝛼/,'() 
 

𝑣 = 𝛼0 
 
The term 𝛼% corresponds to the fixed effect of the intercept, which is modeled for mean (𝜇), 
variance (𝝈), and skewness (𝝂);  The fixed effect of sex, 𝛼%,'() is modeled for the mean (𝜇), 
variance (𝝈); the term 𝛾𝜇,'-.(, representing the random effect of study ‘site’, is also included in 
modeling mean (𝜇). 
 
To validate our models and calculate confidence intervals of the resulting trajectories and 
peaks of growth rate and age, we performed a bootstrapping analysis, consisting of 1,000 
refits with replacement. Trajectories for global and most regional metrics are robust to this 
analysis, with several instabilities found in smaller regional estimates. Details for this analysis 
and the results can be found in Supplementary Information 3. 
 
Cross-species transformation 
To compare spatial patterns across species, we utilized previously established functional 
alignment to transform resulting maps between macaques and humans12. This method 
provides a vertex-to-vertex surface deformation across species, constructed based on the 
matched low-dimensional representations of functional connectivity in humans and macaques.  
Code and transformation are available: https://github.com/TingsterX/alignment_macaque-
human.  
  
Determining developmental milestones across species  
To quantify and compare developmental milestones, we used GAMLSS trajectories to 
estimate ages at which regional and global measurements peak in their size and growth rate. 
Growth rates were determined by taking the first derivative of the median trajectory (50th 
centile), with the peak growth velocity identified at its maximum. Similarly, the age at which a 
tissue type or region peaked in volume, area, or thickness was determined by the point at 
which the median trajectory reached its maximum. In some cases, particularly in smaller 
regions, GAMLSS trajectories were observed to plateau in growth until the end of the lifespan. 
In these instances, the earliest point of the plateau was recognized as the peak age (See 
Supplementary Information 4 for details).  

https://paperpile.com/c/qeOyag/RLHNb
https://github.com/TingsterX/alignment_macaque-human
https://github.com/TingsterX/alignment_macaque-human


 

 
To directly compare the order of regional maturation between species, peak ages were first 
projected back to the cortical surface. We then transformed the macaque maps to human 
surface space using the cross-species alignment described above. The macaque-to-human 
peak age maps were re-parcellated using the Desikan-Killiany9 atlas to match the regional 
human peak age maps. Following, we ranked the peak age from earliest to latest maturation 
time within species and directly subtracted the resulting ranked maps (human - macaque) to 
generate a cross-species difference map, representing the contrast in relative maturity of 
regions across the cortices.   
 
Neurosynth Meta-analysis decoding of growth maps 
To identify critical developmental stages and associated cognitive function, we conducted a 
meta-analysis using the Neurosynth13 database. We first calculated incremental growth maps, 
dividing the developmental period from birth to early adulthood (macaque: 6 years, humans: 
18 years) into time windows of 3-month and 1-month intervals in humans and macaques, 
respectively. For each interval, we calculated the volumetric change of cortical gray matter 
regionally, resulting in 72 growth change maps in each species. Following, we decoded each 
of the human growth maps using the Neurosynth meta-analysis database with the Brainstat14 
software package, computing the spatial correlations (i.e. r-score) between our growth maps 
and the Neurosynth term activation maps. As activation maps in the database are all in human 
reference space, we projected macaque growth maps onto the human surface before 
decoding the macaque-to-human map accordingly. Finally, we summarized feature terms into 
24 topics previously reported15 (e.g. feature terms such as ‘sight’, ‘vision’, and ‘eye’ are 
grouped into the topic ‘eye movements’). The r-scores of terms from the same topic were 
averaged for each time window within species. In Fig 4, the dotted curve represents the 
connected scatter plot of the r-score for each feature term, and the solid curve represents the 
averaged score across terms for each topic. Each curve indicates the cortical developmental 
window for a specific cognitive function. Additionally, we also used GAM models to fit the r-
scores across terms to generate the topic curve (Supplementary Information 5.1). 
  

https://paperpile.com/c/qeOyag/WHW38
https://paperpile.com/c/qeOyag/dgr0u
https://paperpile.com/c/qeOyag/dyYF4
https://paperpile.com/c/qeOyag/biKT8
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